
Funded by the European Union under GA No. 101097011. Views and opinions
expressed are however those of the author(s) only and not necessarily reflect
those of the European Union or CINEA. Neither the European Union nor CINEA
can be held responsible for them.

CPACS tool integration

Tutorial

M. Alder | DLR



Introduction

2

• Aim of the exercise: Adapting your tool to be able to:
• Open a CPACS file

• Add a log entry to CPACS

• Write a CPACS file

• Note: Each tool has its own individual software architecture, which we 
want to influence as little as possible. The following steps are an 
example and may be different for you. The goal of writing a valid XML 
file (CPACS) should be the same for everyone.



Set-up your Python environment (1)

3

We recommend using TiXI for reading and writing CPACS files (available for C, C++, Fortran, JAVA and Python). 
Alternative XML libraries should be available for every major programming language.

The following steps can be skipped if you have already attended the CPACS seminar.

1. Check if you have Conda installed. If not, you can install it via Miniconda or Miniforge.

1

2

3

https://github.com/DLR-SC/tixi
https://github.com/DLR-SL/CPACS_Seminar
https://docs.conda.io/projects/conda/en/stable/
https://docs.conda.io/projects/conda/en/stable/glossary.html#miniconda-glossary
https://github.com/conda-forge/miniforge


Set-up your Python environment (2)

4

• Create a Python environment (=a specific combination of Python 
version plus additional modules) with TiXI 3:

Install Python 3.10, but also other
versions are supported

Choose your preferred
environment name

This will add TiXI 3 from DLR-SC

Confirm with „y“

You are still in the „base“ environment. Don‘t
forget to activate „cpacsEnv“



Test your Python environment (1)

5

1. Extract example_tool.zip (The tool is just called toolA, as we will later add 

exercises with additional tools, like toolB ;-) ).

2. Navigate to this directory

3. Copy the sample CPACS file from ./testData/airports.xml to 

./cpacsIO/CPACS_in.xml (later, RCE will do this step automatically for your 

tool).



Test your Python environment (2)

6

4. Run the python script run.py and check for the output 
./cpacsIO/CPACS_out.xml



Test your Python environment (3)

7

• Note: We only request tool vendors to provide specific locations and 
file names for the incoming and outgoing CPACS files. Its your decision 
on how to define those. My example tool is structured like this:

Incoming and outgoing CPACS files. Other tools use similar directory
names like ToolInput and ToolOutput.

Always a good idea … ;-)

Another good idea: test-driven development ;-) 
But not required for CPACS. Here you will find the example file.

Main Python script

A logo can later be used for RCE tool integration. Not important for
now.



Understanding & adopting the Python script

8(1) Typical Python notation to 
start executing code

(2) Subsequently call pre-processing, 
computation and postprcessing

▪ The philosophy behind this implementation:

1. Preprocessing: Import CPACS file (e.g., 

CPACS_in.xml) and prepare the CPACS data for 

your tool

2. Compute: Call your tool

3. Postprocessing: Translate your tool data into 

CPACS and write a CPACS file (e.g., 

CPACS_out.xml) 



9

(3) Load TiXI library

(4) Use TiXI to open a CPACS file.

▪ TiXI offers comfortable reading and writing of 

CPACS files. All TiXI functions can be found at: 

http://dlr-sc.github.io/tixi/

▪ We could directly use tixi_h in our tool to have 

access to the CPACS data at any time (find all the 

available get-functions here or via help(tixi_h)) 

▪ You can also use the preprocessing step to translate 

the data and write your tool input (e.g., via csv APIs).

Understanding & adopting the Python script

http://dlr-sc.github.io/tixi/
http://dlr-sc.github.io/tixi/group__Elements.html
https://docs.python.org/3/library/csv.html


10

(5) Implement/run your tool

▪ Various approaches are possible here:

▪ Directly implement your code here

▪ Provide your tool as a module that can be imported in 

Python

▪ Run your tool via command line from Python (e.g., 

os.system() or subprocess.call(); see Tutorial)

Understanding & adopting the Python script

https://www.digitalocean.com/community/tutorials/python-system-command-os-subprocess-call


11

▪ Similar to preprocessing: Assume your tool ran 

successfully. Now you want to translate the data 

into CPACS and write the XML file.

Understanding & adopting the Python script



12

▪ Exercise: add a new logEntry element:

Understanding & adopting the Python script



13

(5) We need to read the version of the data set in order to find 
the versionInfo node with the identical attribute

▪ There could be multiple versionInfo elements. We find 
the correct node by comparing the version attribute with 
the version of the data set.

▪ We use XPath to define the path in the CPACS data tree. 
Examples can be found at w3schools.

▪ Note: cpacsVersion is the version of the CPACS schema, 
version is the version of the actual data set.

Understanding & adopting the Python script

https://www.w3schools.com/xml/xpath_syntax.asp


14

(6) Create a new (empty) element called logEntry (doc)

Understanding & adopting the Python script

http://dlr-sc.github.io/tixi/group__Elements.html#ga48de468f8e6b82bafff8465bed229068


15

(7) Create a timestamp in the correct format (»YYYY-MM-
DDThh:mm:ss«, see docs)

(8) Define Xpath to last logEntry element

(9) Add description, timestamp and creator elements (see docs)

Understanding & adopting the Python script

https://www.w3schools.com/xml/schema_dtypes_date.asp
http://dlr-sc.github.io/tixi/group__Elements.html#ga0b069a33a11880de013f01ba659fbee4


16

(10) Write data to XML file: In this example CPACS_out.xml (see docs)

Understanding & adopting the Python script

http://dlr-sc.github.io/tixi/group__FileHandling.html#gaf1bedd335ae49ba7dc69836720b00372


Questions?

17

Questions? Confused?

• marko.alder@dlr.de

• I'm happy to support you with a bilateral exchange.

mailto:marko.alder@dlr.de


Thank you!

marko.alder@dlr.de

www.dlr.de

DLR Hamburg



The team



Acknowledgments

This document and its contents remain the property of the beneficiaries of the Impact Monitor
Consortium. It may contain information subject to intellectual property rights. No intellectual property
rights are granted by the delivery of this document or the disclosure of its content. Reproduction or
circulation of this document to any third party is prohibited without the consent of the author(s).

Funded by the European Union under GA No. 101097011.
Views and opinions expressed are however those of the author(s) only and not
necessarily reflect those of the European Union or CINEA. Neither the European Union
nor CINEA can be held responsible for them.



https://www.linkedin.com/company/impact-monitor-project/

